参考文献

「低温工学」「日本機械学会論文集」の論文は学会ホームページからダウンロードできます。

  • Ohira K., Research and development work on liquid hydrogen technologies in Japan’s WE-NET project. Proc 19th Int Cryo Eng Conf (2003), 557-560.
  • Ohira K., A summary of liquid hydrogen and cryogenic technologies in Japan’s WE-NET project. Adv Cryo Eng, Vol. 49A (2004), 27-34.
  • 大平勝秀, スラッシュ水素を用いた高効率水素エネルギーシステム, 水素利用技術集成, Vol. 4 (㈱エヌ・ ティー・エス, 2014), 301-312. ISBN: 978-4-86469-082-9
  • Ohira K., Slush hydrogen production, storage, and transportation. Compendium of Hydrogen Energy, Vol. 2 (Woodhead Publishing, Elsevier Ltd., 2015), 53-90. ISBN: 978-1-78242-362-1
  • Ohira K. et al., Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in triangular and circular pipe flows. Cryogenics, Vol. 81 (2017), 60-75.
  • 大平勝秀, 液体水素およびスラッシュ水素を利用した高効率水素貯蔵システムの開発, ケミカルエンジニア リング, Vol. 62 (2017), No. 4, 19-26.
  • 大平勝秀, 鉛直管内での水素および窒素の層流膜状凝縮熱伝達に関する研究, 日本機械学会論文集 (B編), Vol. 66 (2000), No. 641, 174-181.
  • 大平勝秀ほか, 液体水素温度での磁気冷凍特性について, 日本航空宇宙学会西部支部講演会 講演集 (1995), 50-53.
  • Ohira K. et al., The characteristics of magnetic refrigeration operating at the temperature of 20 K. Proc 16th Int Cryo Eng Conf (1996), 403-406.
  • Ohira K. et al., Experimental study on magnetic refrigeration for liquefaction of hydrogen. Adv Cryo Eng, Vol. 45 (2000), 1747-1754.
    大平勝秀ほか, 液体水素温度における磁気冷凍技術の開発, 三菱重工技報, Vol. 36 (1999-11), No. 6, 324-327.
    https://www.mhi.co.jp/technology/review/pdf/366/366324.pdf
    大平勝秀, 磁気冷凍法による水素液化技術, 水素利用技術集成 Vol. 3 (㈱エヌ・ ティー・エス, 2007), 453-461. ISBN: 978-4-86043-146-4
  • 大平勝秀ほか, スラッシュ水素の製造および密度計測について, 日本航空宇宙学会西部支部講演会 講演集 (1993), 124-127.
  • Ohira K. et al., An experimental investigation of production and density measurement of slush hydrogen. Cryogenics, Vol. 34 (1994) ICEC Supplement, 397-400.
  • Ohira K., Study of production technology for slush hydrogen. Adv Cryo Eng, Vol. 49A (2004), 56-63.
  • 大平勝秀ほか, スラッシュ水素用静電容量型高精度密度計の開発研究. 日本機械学会論文集 (B編), Vol. 65 (1999), No. 632, 1438-1445.
    Ohira K. et al., Development of a high-accuracy capacitance-type densimeter for slush hydrogen. JSME Int J, Ser. B, Vol. 43 (2000), No. 2, 162-170.
  • Ohira K., Development of density and mass flow rate measurement technologies for slush hydrogen. Cryogenics, Vol. 44 (2004), 59-68.
    大平勝秀, スラッシュ水素の密度および質量流量測定技術の開発, 低温工学, Vol. 40 (2005), No. 10, 396-403.
  • 大平勝秀, 水平管内を流動するスラッシュ窒素の圧力損失低減現象, 低温工学, Vol. 45 (2010), No. 11, 484-492.
  • Ohira K., Pressure drop reduction phenomenon of slush nitrogen flow in a horizontal pipe. Cryogenics, Vol. 51 (2011), 389-396.
  • 大平勝秀ほか, 水平管内を流動するスラッシュ窒素の圧力損失低減および伝熱劣化特性に関する研究, 低温工学, Vol. 46 (2011), No. 3, 148-160.
  • Ohira K. et al., Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in horizontal pipe flow. Cryogenics, Vol. 51 (2011), 563-575.
  • Ohira K. et al., Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in square pipe flow. Physics Procedia, Vol. 67 (2015), 681-686.
  • Ohira K. et al., Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in triangular pipe flow. Proc 24th IIR Int Cong Refrig (2015), ID: 771.
  • 大平勝秀ほか, 収縮・拡大管およびコルゲート管を流動するスラッシュ窒素の圧力損失低減, 低温工学, Vol. 47 (2012), No. 4, 240-250.
  • Ohira K. et al., Pressure drop of slush nitrogen flow in converging-diverging pipes and corrugated pipes. Cryogenics, Vol. 52 (2012), 771-783.
  • Nozawa M. et al., Flow characteristics of slush nitrogen in various types of pipes. Proc ICEC 22-ICMC 2008 (2009), 255-260.
  • 大平勝秀ほか, 水平円管内を流動する極低温スラッシュ流体の流動・伝熱特性に関する数値解析 (SLUSH-3D), 低温工学, Vol. 46 (2011), No. 10, 575-587.
  • Ohira K. et al., Numerical study of flow and heat-transfer characteristics of cryogenic slush fluid in a horizontal circular pipe (SLUSH-3D). Cryogenics, Vol. 52 (2012), 428-440.
  • Ohira K. et al., Numerical study of cryogenic slush flow in a horizontal square pipe for a high-efficiency hydrogen energy system (SLUSH-3D). Proc ICEC 24-ICMC 2012 (2013), 105-110.
  • 大平勝秀, スラッシュ水素およびスラッシュ窒素の核沸騰熱伝達に関する研究, 日本機械学会論文集 (B編), Vol. 65 (1999), No. 640, 4055-4062.
    Ohira K., Study of nucleate boiling heat transfer to slush hydrogen and slush nitrogen. Heat Transfer-Asian Research, Vol. 32 (2003), 13-28.
  • Sindt C. F. et al., Slush hydrogen flow characteristics and solid fraction upgrading. Adv Cryo Eng, Vol. 15 (1970), 382-390.
  • Ohira K. et al., Pressure drop and heat transfer characteristics of boiling liquid nitrogen in a horizontal pipe flow. Proc 23rd Int Cryo Eng Conf (2011), 445-452.
  • Ohira K. et al., Pressure drop and heat transfer characteristics of boiling nitrogen in square pipe flow. Physics Procedia, Vol. 67 (2015), 675-680.
  • 大平 勝秀ほか, 収縮・拡大ノズルを流れるサブクール液体窒素のキャビテーション流動不安定現象, 低温工学, Vol. 46 (2011), No.9, 539-550.
  • Ohira K. et al., Cavitation flow instability of subcooled liquid nitrogen in converging-diverging nozzles. Cryogenics, Vol. 52 (2012), No. 1, 35-44.
  • Frost W. ed., Heat transfer at low temperatures. Plenum Press, New York (1975), 107-141, 203-212.
  • Rapposelli E. et al., A barotropic cavitation model with thermodynamic effects. 5th international symposium on cavitation (2003), Cav03-GS-16-004.
  • Schlichting H., Boundary-layer theory, translated by Kestin J. McGraw-Hill Book, New York (1968), 560-95.