参考文献

「低温工学」「日本機械学会論文集」の論文は学会ホームページからダウンロードできます。

  • Ohira K., Research and development work on liquid hydrogen technologies in Japan’s WE-NET project. Proc. 19th Int. Cryo. Eng. Conf. (2003), 557-60.
  • Ohira K., A summary of liquid hydrogen and cryogenic technologies in Japan’s WE-NET project. Adv. Cryo. Eng., Vol. 49A (2004), 27-34.
  • 大平 勝秀, スラッシュ水素を用いた高効率水素エネルギーシステム, 水素利用技術集成, Vol. 4 (㈱エヌ・ ティー・エス, 2014), 301-12. ISBN: 978-4-86469-082-9
  • Ohira K., Slush hydrogen production, storage, and transportation. Compendium of Hydrogen Energy, Vol. 2 (Woodhead Publishing, Elsevier Ltd., 2015), 53-90. ISBN: 978-1-78242-362-1
  • Ohira K. et al., Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in triangular and circular pipe flows. Cryogenics, Vol. 81 (2017), 60-75.
  • 大平 勝秀, 液体水素およびスラッシュ水素を利用した高効率水素貯蔵システムの開発, ケミカルエンジニア リング, Vol. 62 (2017), No. 4, 19-26.
  • 大平 勝秀, 鉛直管内での水素および窒素の層流膜状凝縮熱伝達に関する研究, 日本機械学会論文集 (B編), Vol. 66 (2000), No. 641, 174-81.
  • 大平 勝秀ほか, 液体水素温度での磁気冷凍特性について, 日本航空宇宙学会西部支部講演会 講演集 (1995), 50-53.
  • Ohira K. et al., The characteristics of magnetic refrigeration operating at the temperature of 20 K. Proc. 16th Int. Cryo. Eng. Conf.(1996), 403-06.
  • Ohira K. et al., Experimental study on magnetic refrigeration for liquefaction of hydrogen. Adv. Cryo. Eng., Vol. 45 (2000), 1747-54.
    大平 勝秀ほか, 液体水素温度における磁気冷凍技術の開発, 三菱重工技報, Vol. 36 (1999-11), No. 6, 324-27.
    https://www.mhi.co.jp/technology/review/pdf/366/366324.pdf
    大平 勝秀, 磁気冷凍法による水素液化技術, 水素利用技術集成 Vol. 3 (㈱エヌ・ ティー・エス, 2007), 453-461. ISBN: 978-4-86043-146-4
  • 大平 勝秀ほか, スラッシュ水素の製造および密度計測について, 日本航空宇宙学会西部支部講演会 講演集 (1993), 124-27.
  • Ohira K. et al., An experimental investigation of production and density measurement of slush hydrogen. Cryogenics, Vol. 34 (1994) ICEC Supplement, 397-400.
  • Ohira K., Study of production technology for slush hydrogen. Adv. Cryo. Eng., Vol. 49A (2004), 56-63.
  • 大平 勝秀ほか, スラッシュ水素用静電容量型高精度密度計の開発研究. 日本機械学会論文集 (B編), Vol. 65 (1999), No. 632, 1438-45.
    Ohira K. et al., Development of a high-accuracy capacitance-type densimeter for slush hydrogen. JSME Int J, Ser. B, Vol. 43 (2000), No. 2, 162-70.
  • Ohira K., Development of density and mass flow rate measurement technologies for slush hydrogen. Cryogenics, Vol. 44 (2004), 59-68.
    Ohira K. et al., Development of a microwave-type densimeter for slush hydrogen. Cryogenics, Vol. 43 (2003), No. 10-11, 615-20.
    Ohira K. et al., Development of a waveguide-type flowmeter using microwave method for slush hydrogen. JSME Int. J. Ser. B, Vol. 48 (2005) 114-121.
    Ohira K. et al., Study on the development of a capacitance-type flowmeter for slush hydrogen. Cryogenics, Vol. 43 (2003), No. 10-11, 607-13.
    大平 勝秀ほか, マイクロ波を利用したスラッシュ水素用導波管型流量計の開発研究. 日本機械学会論文集 (B編), Vol. 69 (2003), 1928-1934.
    大平 勝秀, スラッシュ水素の密度および質量流量測定技術の開発, 低温工学, Vol. 40 (2005), No. 10, 396-403.
  • 大平 勝秀, 水平管内を流動するスラッシュ窒素の圧力損失低減現象, 低温工学, Vol. 45 (2010), No. 11, 484-92.
  • Ohira K., Pressure drop reduction phenomenon of slush nitrogen flow in a horizontal pipe. Cryogenics, Vol. 51 (2011), 389-96.
  • 大平勝秀ほか, 水平管内を流動するスラッシュ窒素の圧力損失低減および伝熱劣化特性に関する研究, 低温工学, Vol. 46 (2011), No. 3, 148-60.
  • Ohira K. et al., Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in horizontal pipe flow. Cryogenics, Vol. 51 (2011), 563-75.
  • Ohira K. et al., Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in square pipe flow. Physics Procedia, Vol. 67 (2015), 681-86.
  • Ohira K. et al., Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in triangular pipe flow. Proc. 24th IIR Int. Cong. Refrig. (2015), ID: 771.
  • 大平 勝秀ほか, 収縮・拡大管およびコルゲート管を流動するスラッシュ窒素の圧力損失低減, 低温工学, Vol. 47 (2012), No. 4, 240-50.
  • Ohira K. et al., Pressure drop of slush nitrogen flow in converging-diverging pipes and corrugated pipes. Cryogenics, Vol. 52 (2012), 771-83.
  • Nozawa M. et al., Flow characteristics of slush nitrogen in various types of pipes. Proc. ICEC 22-ICMC 2008 (2009), 255-60.
  • 大平 勝秀ほか, 水平円管内を流動する極低温スラッシュ流体の流動・伝熱特性に関する数値解析 (SLUSH-3D), 低温工学, Vol. 46 (2011), No. 10, 575-87.
  • Ohira K. et al., Numerical study of flow and heat-transfer characteristics of cryogenic slush fluid in a horizontal circular pipe (SLUSH-3D). Cryogenics, Vol. 52 (2012), 428-40.
  • Ohira K. et al., Numerical study of cryogenic slush flow in a horizontal square pipe for a high-efficiency hydrogen energy system (SLUSH-3D). Proc. ICEC 24-ICMC 2012 (2013), 105-10.
  • Ohira K. et al., Nucleate pool boiling heat transfer to slush hydrogen. Proc. of 16th ICEC (1996), 601-604.
    大平 勝秀, スラッシュ水素およびスラッシュ窒素の核沸騰熱伝達に関する研究, 日本機械学会論文集 (B編), Vol. 65 (1999), No. 640, 4055-62.
    Ohira K., Study of nucleate boiling heat transfer to slush hydrogen and slush nitrogen. Heat Transfer-Asian Research, Vol. 32 (2003), 13-28.
  • Sindt C. F. et al., Slush hydrogen flow characteristics and solid fraction upgrading. Adv. Cryo. Eng., Vol. 15 (1970), 382-90.
  • Ohira K. et al., Pressure drop and heat transfer characteristics of boiling liquid nitrogen in a horizontal pipe flow. Proc. 23rd Int Cryo Eng Conf (2011), 445-52.
  • Ohira K. et al., Pressure drop and heat transfer characteristics of boiling nitrogen in square pipe flow. Physics Procedia, Vol. 67 (2015), 675-80.
  • 大平 勝秀ほか, 収縮・拡大ノズルを流れるサブクール液体窒素のキャビテーション流動不安定現象, 低温工学, Vol. 46 (2011), No.9, 539-50.
  • Ohira K. et al., Cavitation flow instability of subcooled liquid nitrogen in converging-diverging nozzles. Cryogenics, Vol. 52 (2012), No. 1, 35-44.
  • Frost W. ed., Heat transfer at low temperatures. Plenum Press, New York (1975), 107-41, 143-75, 203-12.
  • Rapposelli E. et al., A barotropic cavitation model with thermodynamic effects. 5th int. symp. on cavitation (2003), Cav03-GS-16-004.
  • Schlichting H., Boundary-layer theory, translated by Kestin J. McGraw-Hill Book, New York (1968), 560-95.
  • Winterton R. H. S., Thermal design of nuclear reactors, Pergamon Press, New York (1981).
  • Khalil A. et al., Experimental measurement of void fraction in cryogenic two phase upward flow. Cryogenics, Vol. 21 (1981), 411-14.
  • Butterworth D., A comparison of some void-fraction relationships for co-current gas-liquid flow. Int. J. Multiphase Flow, Vol. 1 (1975), 845-50.
  • Tollefsen J. et al., Capacitance sensor design for reducing errors in phase concentration measurements. Flow Measurement and Instrumentation, Vol. 9 (1998), 25-32.
  • Gungor K. E., Winterton R. H. S., Simplified general correlation for saturated flow boiling and comparisons of correlations with data. Chem. Eng. Res. Des., Vol. 65 (1987), 148-56.
  • Liu Z., Winterton R. H. S., A general correlation for saturated and subcooled flow boiling in tubes and annuli based on a nucleate pool boiling equation. Int. J. Heat Mass Transfer, Vol. 34 (1991), 2759-66.
  • Schrock V. E., Grossman L. M., Forced convection boiling in tubes. Nuc. Sci. Eng., Vol. 12 (1962), 474-81.
  • Chen J. C., Correlation for boiling heat transfer to saturated liquids in convective flow. Ind. Eng., Chem. Proc. Des. Dev., Vol. 5 (1966), 322-29.
  • 大平 勝秀ほか, 水平円管を流れる沸騰液体窒素のボイド率測定と圧力損失, 熱伝達特性, 日本混相流学会 混相流シンポジウム 2014 講演論文集 (2014), ID: C144.
  • Ohira K. et al., Pressure drop and heat transfer characteristics of two-phase boiling nitrogen triangular pipe flow. International Workshop on Cooling System for HTS Applications (IWC-HTS) 2015, (2015), Paper ID: OR4-06.
  • Chisholm D., A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow. Int. J. Heat and Mass Transfer, Vol. 10 (1967), 1767-78.
  • Levy S., Forced convection subcooled boiling - Prediction of vapor volumetric fraction. Int. J. Heat and Mass Transfer, Vol. 10 (1967), 951-65.
  • Woldesemayat M. A. et al., Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes. Int. J. Multiphase Flow, Vol. 33 (2007), 347-70.
  • Kadambi V., Void fraction and pressure drop in two-phase stratifiedflow. Can. J. Chem. Engng., Vol. 59 (1981), 584-89.
  • Kandlikar S. G., A general correlation for saturated two-phase flow boiling heat trnsfer inside horizontal and vertical tubes. J. Heat Transfer, Vol. 112 (1990), 219-28.
  • Steiner D., Heat transfer during flow boiling of cryogenic fluids in vertical and horizontal tubes. Cryogenics, Vol. 26 (1986), 309-18.
  • Ellerbruch D. A., Microwave method for cryogenic liquid and slush instrumentation. Adv. Cryo. Eng., Vol. 16 (1971), 241–50.
  • Bewilogua L. et al., Heat transfer in cryogenic liquids under pressure. Cryogenics, Vol. 15 (1975), 121-25.
  • Deev V. I. et al., Nucleate and film pool boiling heat transfer to saturated liquid helium. Cryogenics, Vol. 17 (1977), 557-62.
  • Lyon D. N., Boiling heat transfer and peak nucleate boiling fluxes in saturated liquid helium between the λ and critical temperatures. Adv. Cryo. Eng., Vol.10 (1965), 371-79.
  • Class C. R. et al., Boiling heat transfer to liquid hydrogen from flat surfaces. Adv. Cryo. Eng., Vol.5 (1960), 254-61.
  • Coeling K. J. et al., Incipient and nucleate boiling of liquid hydrogen. J. Eng. Ind., Vol. 91 (1969), 513-20.
  • Sindt C. F., Heat transfer to slush hydrogen. Adv. Cryo. Eng., Vol. 19 (1974), 427-36.
  • 大平 勝秀ほか, 極低温流体技術の宇宙機器への応用開発, 三菱重工技報, Vol. 33 (1996-5), No. 3, 1-4.